In this section, you consider active and passive nodes, the shared disk array, the quorum, public and private networks, and the cluster server. Then, you learn how a failover works.
Active Nodes Versus Passive Nodes
A Windows Failover Cluster can support up to sixteen nodes; however, most clustering deployment is only two nodes. A single SQL Server 2012 instance can run on only a single node at a time; and should a failover occur, the failed instance can failover to another node. Clusters of three or more physical nodes should be considered when you need to cluster many SQL Server instances.
In a two-node Windows Failover Cluster with SQL Server, one of the physical nodes is considered the active node, and the second one is the passive node for that single SQL Server instance. It doesn’t matter which of the physical servers in the cluster is designated as active or passive, but you should specifically assign one node as the active and the other as the passive. This way, there is no confusion about which physical server is performing which role at the current time.
When referring to an active node, this particular node is currently running a SQL Server instance accessing that instance’s databases, which are located on a shared disk array.
When referring to a passive node, this particular node is not currently running the SQL Server. When a node is passive, it is not running the production databases, but it is in a state of readiness. If the active node fails and a failover occurs, the passive node automatically runs production databases and begins serving user requests. In this case, the passive node has become active, and the formerly active node becomes the passive node (or the failed node, if a failure occurs that prevents it from operating).
Shared Disk Array
Standalone SQL Server instances usually store their databases on local disk storage or nonshared disk storage; clustered SQL Server instances store data on a shared disk array. Shared means that all nodes of the Windows Failover Cluster are physically connected to the shared disk array, but only the active node can access that instance’s databases. To ensure the integrity of the databases, both nodes of a cluster never access the shared disk at the same time.
Generally speaking, a shared disk array can be an iSCSI, a fiber-channel, SAS connected, a RAID 1, a RAID 5, or a RAID 10 disk array housed in a standalone unit, or a SAN. This shared disk array must have at least two logical disk partitions. One partition is used for storing the clustered instance’s SQL Server databases, and the other is used for the quorum drive, if a quorum drive is used. Additionally, you need a third logical partition if you choose to cluster MSDTC.
The Quorum
When both cluster nodes are up and running and participating in their respective active and passive roles, they communicate with each other over the network. For example, if you change a configuration setting on the active node, this configuration is propagated automatically, and quickly, to the passive node, thereby ensuring synchronization.
As you might imagine, though, you can make a change on the active node and have it fail before the change is sent over the network and made on the passive node. In this scenario, the change is never applied to the passive node. Depending on the nature of the change, this could cause problems, even causing both nodes of the cluster to fail.
To prevent this change from happening, a Windows Failover Cluster employs a quorum. A quorum is essentially a log file, similar in concept to database logs. Its purpose is to record any change made on the active node. This way, should any recorded change not get to the passive node because the active node has failed and cannot send the change to the passive node over the network, the passive node, when it becomes the active node, can read the quorum log file to find out what the change was. The passive node can then make the change before it becomes the new active node. If the state of this drive is compromised, your cluster may become inoperable.
In effect, each cluster quorum can cast one “vote,” where the majority of total votes (based on the number of these cluster quorums that are online) determine whether the cluster continues running on the cluster node. This prevents more than one cluster node attempting to take ownership of the same SQL Server instance. The voting quorums are cluster nodes or, in some cases, a disk witness or file share witness. Each voting cluster quorum (with the exception of a file share witness) contains a copy of the cluster configuration. The cluster service works to keep all copies synchronized at all times.
Following are the four supported Windows Failover Cluster quorum modes:
- Node Majority: Each node that is available and in communication can vote. The cluster functions only with a majority of the votes.
- Node and Disk Majority: Each node plus a designated disk in the cluster storage (the “disk witness”) can vote, whenever they are available and in communication. The cluster functions only with a majority of the votes.
- Node and File Share Majority: Each node plus a designated file share created by the administrator (the “file share witness”) can vote, whenever they are available and in communication. The cluster functions only with a majority of the votes.
- No Majority: Disk Only: The cluster has a quorum if one node is available and in communication with a specific disk in the cluster storage. Only the nodes that are also in communication with that disk can join the cluster. The disk is the single point of failure, so use highly reliable storage. A quorum drive is a logical drive on the shared disk array dedicated to storing the quorum and as a best practice should be around 1GB of fault tolerant disk storage.
With two-node clusters Disk only is the most often used quorum configuration, commonly known as the quorum disk. The quorum configuration can be switched after the cluster has been deployed based on the number of clustered nodes and user requirements. While in clusters with greater than two nodes, the other three quorum modes are more commonly used.
[…] Each node of a cluster must have at least two network cards to be a fully supported installation. One network card is connected to the public network, and the other network card will be connected to a private cluster network. (Read Part 1 of this two-part article here.) […]